التخطي إلى المحتوى الرئيسي

ML.NET: Machine Learning for .NET Developers

ML.NET: Machine Learning for .NET Developers


Welcome, .NET developers! Explore the power of ML.NET, Microsoft's opensource machine learning framework. Leverage your existing C# skills to build intelligent applications. No Python or TensorFlow needed.

 Step by Step Project Implementation:


Create Console Application Project using C#

Download Micorsoft.ML Package


Step 1st:

using Microsoft.ML.Data;



namespace MLExample

{

    internal class StudentData

    {

        [LoadColumn(0)]

        public float StudyHours;


        [LoadColumn(1)]

        public float Attendance;


        [LoadColumn(2), ColumnName("Label")]

        public bool Passed;

    }

}

2) Create StudentPrediction Class

internal class StudentPrediction
{
    [ColumnName("PredictedLabel")]
    public bool Passed;

    public float Probability { get; set; }

    public float Score { get; set; }
}

3) Create student-data.csv file as a Data Source
5,90,True
2,60,False
8,95,True
1,50,False
6,85,True
3,65,False
7,92,True
2,40,False
4,70,True
1,30,False


4) Program.cs file
using Microsoft.ML;
using MLExample;
using System;

    class Program
    {
        static void Main(String[] args)
        {
        Console.WriteLine("Hello");
        var context = new MLContext();

        // 2. Load Data (update your file path here)
        var data = context.Data.LoadFromTextFile<StudentData>(
            path: @"d:\student-data.csv",
            hasHeader: false,
            separatorChar: ',');

        // 3. Define the pipeline
        var pipeline = context.Transforms
      .Concatenate("Features", nameof(StudentData.StudyHours), nameof(StudentData.Attendance))
      .Append(context.BinaryClassification.Trainers.SdcaLogisticRegression(
          new Microsoft.ML.Trainers.SdcaLogisticRegressionBinaryTrainer.Options
          {
              MaximumNumberOfIterations = 10
          }));
        Console.WriteLine("Training started...");
        // 4. Train the model
        var model = pipeline.Fit(data);
        Console.WriteLine("Training completed.");

        // 5. Create prediction engine (for single prediction)
        var predictor = context.Model.CreatePredictionEngine<StudentData, StudentPrediction>(model);

        // 6. Create sample input
        var newStudent = new StudentData
        {
            StudyHours = 4,
            Attendance = 80
        };

        // 7. Predict
        var result = predictor.Predict(newStudent);

        // 8. Output result
        Console.WriteLine($"Study Hours: {newStudent.StudyHours}, Attendance: {newStudent.Attendance}");
        Console.WriteLine($"Will Pass: {result.Passed}, Probability: {result.Probability:P2}");
    }
    }


تعليقات

المشاركات الشائعة من هذه المدونة

DSA in C# | Data Structure and Algorithm using C#

  DSA in C# |  Data Structure and Algorithm using C#: Lecture 1: Introduction to Data Structures and Algorithms (1 Hour) 1.1 What are Data Structures? Data Structures are ways to store and organize data so it can be used efficiently. Think of data structures as containers that hold data in a specific format. Types of Data Structures: Primitive Data Structures : These are basic structures built into the language. Example: int , float , char , bool in C#. Example : csharp int age = 25;  // 'age' stores an integer value. bool isStudent = true;  // 'isStudent' stores a boolean value. Non-Primitive Data Structures : These are more complex and are built using primitive types. They are divided into: Linear : Arrays, Lists, Queues, Stacks (data is arranged in a sequence). Non-Linear : Trees, Graphs (data is connected in more complex ways). Example : // Array is a simple linear data structure int[] number...

JSP Page design using Internal CSS

  JSP is used to design the user interface of an application, CSS is used to provide set of properties. Jsp provide proper page template to create user interface of dynamic web application. We can write CSS using three different ways 1)  inline CSS:-   we will write CSS tag under HTML elements <div style="width:200px; height:100px; background-color:green;"></div> 2)  Internal CSS:-  we will write CSS under <style> block. <style type="text/css"> #abc { width:200px;  height:100px;  background-color:green; } </style> <div id="abc"></div> 3) External CSS:-  we will write CSS to create a separate file and link it into HTML Web pages. create a separate file and named it style.css #abc { width:200px;  height:100px;  background-color:green; } go into Jsp page and link style.css <link href="style.css"  type="text/css" rel="stylesheet"   /> <div id="abc"> </div> Exam...

Top 50 Most Asked MERN Stack Interview Questions and Answers for 2025

 Top 50 Most Asked MERN Stack Interview Questions and Answers for 2025 Now a days most of the IT Company asked NODE JS Question mostly in interview. I am creating this article to provide help to all MERN Stack developer , who is in doubt that which type of question can be asked in MERN Stack  then they can learn from this article. I am Shiva Gautam,  I have 15 Years of experience in Multiple IT Technology, I am Founder of Shiva Concept Solution Best Programming Institute with 100% Job placement guarantee. for more information visit  Shiva Concept Solution 1. What is the MERN Stack? Answer : MERN Stack is a full-stack JavaScript framework using MongoDB (database), Express.js (backend framework), React (frontend library), and Node.js (server runtime). It’s popular for building fast, scalable web apps with one language—JavaScript. 2. What is MongoDB, and why use it in MERN? Answer : MongoDB is a NoSQL database that stores data in flexible, JSON-like documents. It...