ML.NET: Machine Learning for .NET Developers
Welcome, .NET developers! Explore the power of ML.NET, Microsoft's opensource machine learning framework. Leverage your existing C# skills to build intelligent applications. No Python or TensorFlow needed.
Step by Step Project Implementation:
Create Console Application Project using C#
Download Micorsoft.ML Package
Step 1st:
using Microsoft.ML.Data;
namespace MLExample
{
internal class StudentData
{
[LoadColumn(0)]
public float StudyHours;
[LoadColumn(1)]
public float Attendance;
[LoadColumn(2), ColumnName("Label")]
public bool Passed;
}
}
2) Create StudentPrediction Class
internal class StudentPrediction
{
    [ColumnName("PredictedLabel")]
    public bool Passed;
    public float Probability { get; set; }
    public float Score { get; set; }
}
3) Create student-data.csv file as a Data Source
5,90,True
2,60,False
8,95,True
1,50,False
6,85,True
3,65,False
7,92,True
2,40,False
4,70,True
1,30,False
4) Program.cs file
using Microsoft.ML;
using MLExample;
using System;
    class Program
    {
        static void Main(String[] args)
        {
        Console.WriteLine("Hello");
        var context = new MLContext();
        // 2. Load Data (update your file path here)
        var data = context.Data.LoadFromTextFile<StudentData>(
            path: @"d:\student-data.csv",
            hasHeader: false,
            separatorChar: ',');
        // 3. Define the pipeline
        var pipeline = context.Transforms
      .Concatenate("Features", nameof(StudentData.StudyHours), nameof(StudentData.Attendance))
      .Append(context.BinaryClassification.Trainers.SdcaLogisticRegression(
          new Microsoft.ML.Trainers.SdcaLogisticRegressionBinaryTrainer.Options
          {
              MaximumNumberOfIterations = 10
          }));
        Console.WriteLine("Training started...");
        // 4. Train the model
        var model = pipeline.Fit(data);
        Console.WriteLine("Training completed.");
        // 5. Create prediction engine (for single prediction)
        var predictor = context.Model.CreatePredictionEngine<StudentData, StudentPrediction>(model);
        // 6. Create sample input
        var newStudent = new StudentData
        {
            StudyHours = 4,
            Attendance = 80
        };
        // 7. Predict
        var result = predictor.Predict(newStudent);
        // 8. Output result
        Console.WriteLine($"Study Hours: {newStudent.StudyHours}, Attendance: {newStudent.Attendance}");
        Console.WriteLine($"Will Pass: {result.Passed}, Probability: {result.Probability:P2}");
    }
    }
.png)
 
 
 
.webp) 
0 تعليقات
POST Answer of Questions and ASK to Doubt