Ad Code

✨🎆 Codex 1.0 PLACEMENT READY PROGRAM! 🎆✨

Get 75% Discount Early bird offer CLICK to JOIN CodeX 1.0 click

What is GEN AI and Job Ready Roadmap for 2026.

🤖 WHAT IS GEN AI?

Gen AI (Generative AI) is a type of artificial intelligence that can create new things like text, images, videos, audio, or code by learning patterns from data

“GenAI ka matlab hai Generative Artificial Intelligence — yaani aisi AI jo cheezon ko create karti hai. Text create kare, images banaye, code likhe, music generate kare — sab GenAI ka kaam hai.”

Agar aapne ChatGPT ko koi email likhne ko bola, ya koi photo banane ko bola — woh GenAI use karta hai.

Simple Indian Example:

Socho aap ek engineering student ho. Aapko placement ke liye resume banana hai. Aap GenAI ko bolte ho:
“Mere projects ke basis pe ek clean resume banao.”

Aur 10 seconds mein woh ek professional resume create kar deta hai. This is GenAI.

⚙️ GEN AI KAAM KAISA KARTA HAI?

“GenAI simple language mein ek super-smart ‘next word predictor’ hota hai. Bohot saara data dekh kar yeh language, image aur audio ke patterns seekhta hai. Phir jab aap kuch poochte ho, woh same patterns use karke naya content generate karta hai.”

Indian Example:

Aapne kabhi ghar par momos banaye bina internet ke, sirf yaad se? Kyuki aapne pehle 50 baar mummy ko banate hue dekha hota hai. GenAI bhi wahi karta hai — bohot saare examples dekh ke naye results banata hai.

⭐ GEN AI JOB-READY ROADMAP — Topic-wise Detailed Guide (For Tech Learners)

✅ 1. Python Basics

What it is:

Python AI ke liye sabse easy aur powerful language hai. Yeh data clean karne, AI models se baat karne, aur choti tools banane mein madad karta hai.

Why it is used:

  • AI projects ke liye code likhna
  • OpenAI, Google, Meta jaisi APIs call karna
  • NumPy, Pandas, FastAPI jaisi libraries ka use
  • Automation — files, CSVs, data cleaning

Where it's used:

  • Chatbots
  • PDF cleaning for RAG
  • AI web apps
  • AI agents ka logic likhne

Summary: Python = AI ka foundation.


✅ 2. LLM Fundamentals (Large Language Models)

What it is:

LLMs bohot bada model hota hai jo massive text data par trained hota hai. Yeh text ko samajhta, likhta, summarize, translate aur answer karta hai.

Key terms:

  • Token: text ke chhote pieces
  • Embedding: text ka numerical meaning
  • Prompt: instructions for AI
  • Context window: AI kitna text ek baar mein yaad rakhta hai

Why it is used:

GenAI apps banane ke liye LLMs samajhna zaroori hai.

  • Text generation
  • Question answering
  • Code generation
  • Language understanding

Summary: LLM = GenAI ka brain.


✅ 3. Prompt Engineering

What it is:

Prompting = AI se sahi tarike se baat karna taaki perfect result mile.

Types of prompts:

  • System prompts: AI ka behaviour set
  • Role prompts: “You are an HR expert…”
  • Structured prompts: Templates
  • Function calling prompts: APIs ko use karwana

Why it is used:

Good prompts = Accurate answers Bad prompts = Hallucinations

Summary: Prompting = AI ko smart instructions dena.


✅ 4. RAG (Retrieval Augmented Generation)

What it is:

RAG = Jab AI answer dene se pehle aapke documents ko search karta hai. Isse accuracy badhti hai aur hallucination kam hoti hai.

Simple flow:

PDF → chunks → embeddings → vector DB → relevant chunks → LLM → correct answer

Summary: RAG = AI + Google Search for your documents.


✅ 5. Vector Databases

Vector DB = jaha AI “meaning” store karta hai.

  • Chroma
  • Pinecone
  • Weaviate
  • Milvus

Summary: Vector DB = meaning-based search.


✅ 6. AI Agents + Function Calling

AI Agent = AI jo tasks karta hai, tools use karta hai, aur decisions leta hai — bilkul ek intern ki tarah.

Summary: Agent = AI that works, not just talks.


✅ 7. Fine-Tuning & LoRA

Fine-tuning = Model ko aapke domain ke hisaab se train karna.

Summary: Fine-tuning = Personalized AI.


✅ 8. Multimodal AI

Multimodal models text + image + audio + video sab handle karte hain.

Summary: Multimodal = AI that can see, hear and understand.


✅ 9. FastAPI / Deployment

FastAPI = AI apps ko world tak pahunchane ka framework.

Summary: FastAPI = Publish your AI.


✅ 10. Docker

Docker = App ko pack karke kahin bhi run karne layak banana.

Summary: Docker = Portable AI app box.


BEGINNER-FRIENDLY ANALOGY SUMMARY

Imagine building a restaurant:

Python = your kitchen

LLM = main che

Prompting = recipe instructions

RAG = recipe book search

Vector DB = stored recipes

Agents = staff who take orders & deliver food

Fine-tuning = teaching chef your grandma’s special dishes

FastAPI = restaurant door

Docker = portable kitchen

Monitoring = customer feedback system

This is the entire GenAI engineering world — simple!




Post a Comment

0 Comments